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An oetahedral body with identical masses placed at opposite vertices moves around a fixed point in a central field of Newtonian 
attraction. The body is suspended at its centre of mass, which coincides with its geometrical centre, and the dimensions of the 
body and the masses o~ncentrated at the vertices are such that all principal central moments of inertia are equal. The problem 
of whether steady motions of such a body exist is considered, and the stability and bifurcations of certain classes of solutions are 
investigated. The results are compared with similar results for steady motions of a rigid body whose mass distribution admits of 
the symmetry group of a regular octahedron [1]. © 1996 Elsevier Science Ltd. All rights reserved. 

1. We shall eonsidler the motion in a central gravitational field of a rigid body formed by a triple of 
weightless mutually perpendicular rods 11,/2 and/3 that have exactly one common point--their  midpoint 
O. The lengths of  the rods are 2al, 2a 2 and 2a 3 and the masses concentrated at the opposite ends of 
each are respectively rni, where (and throughout this paper) i = 1, 2, 3. 

Let Ox#2x3 be a right Cartesian system of coordinates attached to the body with axes directed along 
the rods 11,/2 and 13, and let C be an attracting centre. In this system of coordinates 

CO = r(71,](2,  ~'3), I C O l =  r 

co = ((01, 002, o)3) is the angular velocity vector and I = diag (11, !2, 13) is the principal central tensor 
2 2 2 of inertia. Let us assume that 11 = 12 = / 3  = L Then mlal = m2al = m3a3 and the expressions for the 

kinetic and potential energies are 

T=~IT. (o2, U = - f M Y .  mi(llp+ + l l p T )  
i i 

P7 = ( r2 + 2raiYi + a2i ) - ~  

where f is the universal gravitational constant and M is the mass of the attracting centre. 
The equations of motion are 

ico.=yxaul~, y =yx(o 

They have first integrals: H = T + U = h is the energy integral, J1 = 1((o, y) = Pw is the integral 
of  the projection of,1 the angular momentum vector onto the y axis and J2 -- (Y, Y) = 1 is the geometric 
integral. We lack one more integral for these equations to be integrable in the general case. 

2. In order to seek steady motions, let us consider the critical points of  the reduced potential energy 

W = p2 (21(T))-I + U('~), I(T) -- E li'~ 2 
i 

at a level of the geometrical integral fixed in a natural way. Since all the moments of inertia are assumed 
to be equal, it follows that l(y) -= I and the problem of steady solutions and sufficient conditions for 
their stability is equivalent to the problem of investigating the system's sets of equilibrium positions 
and their stability. 
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Consider the critical points of the function 

Wg = W + ~((Y, Y) - 1)/2 

They are defined by the equations 

3W~t / OYi = fMmirai((1 / p+)3 _ (1 / p~-)3) + ~Ti = 0, Ix = -(T, OU / 0T) (2.1) 

In Routh's theorem, the sufficient conditions for stability of steady motions are defined as conditions 
for the quadratic form 

i 

to be positive definite on the linear manifold ~r 2 = {~ :  (y, ~y) = 0}. 
There are no terms in the expression for the second variation with ~/ ,  ~ ,  i ~ j, because the mixed 

derivatives vanish. The other second derivatives in the expression are 

32U / ~T~ = - 3  fMmlrai((l l p+)S +(I/p;)S) 

Equations (2.1) have solutions 

Y~ = +1,  y j = 0 ,  j , i  (2.2) 

In these solutions the ith axis of the body points towards the attracting centre and the body rotates 
at a constant angular velocity about that axis. For such solutions the linear manifold has the form 812 
= {67: 6T/= 0}, and therefore the motion will be stable if the coefficients of ~ (j ~ i) are positive. 
Denoting t~i = a.Jr, we write these conditions as follows: (j  e {1, 2, 3}\{i}) (compare [2]) 

3+¢~/2 3 
f ( a  i, a j)  = (1 - a2)3 (1 + t ~ ) ~  > O, t~ i < 1 (2.3) 

3a 2 + 1 3ffj 
= > 0, t~ i > 1 (2.4) f(t~i, (~j) (t~/2_1)3 ( l + o ~ ) ~  

Investigation shows that the stability conditions (2.3) are always satisfied, and if ¢~i < 1, the motion 
under consideration is always stable. The stability condition (2.4) is not always satisfied. Hence, if ai > 1, 

3 the set of parameter values in the space R (~1, ¢~2, a3) for which the function f (c~i, aj) vanishes defines 
bifurcation surfaces on which the degree of instability of the corresponding steady motions varies. These 
surfaces are cylinders whose generators are parallel to the kth axis, k = {1, 2, 3}\{i,j}. The directrices 
of the cylinders are defined by the equationsf(¢~i, c~j) = 0, and iff(t~i(0), 0) = 0, then ¢~i(0) > 1. 

These stability conditions may be compared with the stability conditions of analogous solutions for 
a regular octahedron. It has been proved [1] that solutions of  this kind for a regular octahedron are 
stable for any ratio agr. The above investigation shows that, subject to the assumptions made about the 
set of  bodies considered, such solutions maintain their stability over a fairly wide range of  parameters, 
which includes the parameters studied in [1]. 

Let us consider whether there are what are known as "oblique" permanent rotations, when the body 
is so positioned that none of the xi axes faces the attracting centre. We first consider the question of  
whether rotations may exist in which the attracting centre is located in one of the planes Oxpcj but not 
on either of the xi and xj axes. To that end we change variables 

Ti = sin 0 sin tp, yj = sin O cos 9, 1'* = cos 0 

and look for permanent rotations by solving the equations 

aw/atp = o, ;314:/3o = o 

The second.equation is satisfied at ~) = rr/2 + rd, l = 0, __+ 1 , . . . .  Consider the solution corresponding 
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to the angle a) = ~/2. Then the first equation may be written outside the set {9 = 0, 9 = n/2 (mod n)} 
as  

2 - _3 ( l+(~ j )  ~ f j ( 9 ) = ( l + o  21 "~f/(9) (2.5) 

f~ (9 )  = F(ej  cos 9 )  1 cos 9,  fi (9 )  = F(ei sin 9)  / sin 9 

F ( x )  =(1 - x )  -~  - ( l + x )  N, ~i = 2~i(1 + ~ )  -I 

Let us investigate the properties of the functions)~(9) and.~(9) in the interval (0, n/2). Expanding 
the function)~ in a convergent series in powers of the parameter ejcos 9 ~ (0, 1), we get 

fJ(q)) = :~0 fJt(eJ)C°S2t 9 (2.6) 

where all the functions.~l(~y) are positive. Consequently, since any natural power of the cosine is a strictly 
monotone decreaLsing function in (0, ~/2), the same is true offj(9): it decreases monotonically from 

to 3cj. 
Expanding.~(9) in a convergent series in powers of the parameter "q/sin 9 ~ (0, 1), we obtain an 

expression analogous to (2.6) with ej replaced by e/and cos 9 by sin 9 with the same coefficients f a  = 

~l for any l. Since any natural power of the sine is a strictly monotone increasing function in (0, n/2), it 
follows that ~(9) also increases (strictly) monotonically from 3e/to F(e/). 

Thus, if the condition 

(1 + (~)-~2 F(Ej ) > 3(1 + 02 )-~ I~ i 

and the analogous condition with the subscripts i andj interchanged are both satisfied, then Eq. (2.4) 
has a unique solution as a function of 9. 

Comparing with the conditions for the varying degree of instability of the "direct" solutions 
considered hitherto, one sees that the set of oblique solutions in the space R3(t~I, t~2, t~3) × $2()1, )2, T3) 
branches off from one of the direct solutions {)i = _.+1, ~ = 0,j # i} as its degree of instability varies 
with the parameters. This set tends to another such solution as the parameter values tend to the values 
at which the degree of instability of those other solutions varies. This approach to the branching of 
steady motions may also be extended to the problem of the orbital dynamics of rigid bodies of octahedral 
shape made up, for example, of homogeneous rods or of mass-less rods with equal masses at their 
opposite ends [2-4]. 

3. The investigation of the sufficient conditions for the stability of oblique solutions, in the general 
case, is rather difficult, as these solutions are not available as explicit functions of the parameters. 
Nevertheless, if the conditions a i = a j  =. a holds, oblique solutions may be determined explicitly. They 
have the form 

) i  = ---+)j = 1 / ~ - )  )k  = 0 (3.1) 

and one can write down explicit stability conditions for them. For example, for the solution 

), = ) j  = ) 4  = 0 

the linear manifold is 

8 J  2 = {i~): 87i + 8) j  = 0} 

and the stability conditions reduce to conditions for the quadratic form 

282W, = (a2U / a72 + a2u / ~,~ + 21.t) i572 + (a2u / aT, 2 + ~t) 87, 2 

$7 = 87i = -~Tj 
to be positive defirdte. The condition for the first coefficient to be positive may be expressed, apart from 
a positive factor, as 
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-3o(A-+ 5 + A Ls ) + "~/2(A -5 - A-+ 5 ) > 0 (3.2) 

O : a / r ,  A_+ : ( 1 + f l 2 0 + O 2 )  ~ 

This condition never holds. Consequently, the solution has a degree of instability of at least one. The 
condition for the second coefficient to be positive is 

g(o, ok)=(A -3 -A~:~)O -l -3~/2(1+O~) ~ >0 (3.3) 

The domain in the (o, ok) plane in which condition (3.3) holds lies to the right of the setg(o, ok) = 0, 
and ifg(o(0), ok) = 0, then 0 < o(0) < 1. 

Let us compare these conditions with the conditions for the stability of the analogous solutions for 
a regular octahedron. It has been proved [1] that, for a regular octahedron, solutions of this type have 
a degree of instability of one for any ratio ai/r. Our investigation shows that, subject to the assumptions 
made about the set of bodies under consideration, the degree of instability of these solutions is preserved 
over a fairly large range of parameters, including those studied in [1]. 

4. Let us investigate whether steady motions exist such that the axis of rotation of the body lies inside 
one of the octants. We will again assume that al = a2. Then, introducing angles 0 and ¢p, as previously, 
we can seek such solutions, say, in the set 9 = n/4. In this situation, the desired solution must satisfy 
the following equation in the interval 0 e (0, ~/2) 

m(l + (I 2 )-~ I~f(0) = m 3 (1 + o 2 )-Y221~3f~ (0) 

A (a~) = F(e 3 cos O) / cos O, f (u)  = F(e sin 0 / ~ ) / ( s i n  O / ~ )  

e = 2o (1 + 02) -I 

Continuing the investigation as in Section 2, we conclude that solutions with the axis of rotation in 
the first octant exist provided that 

m3(1 + 0~)-~2 E3F(e3) > 3m(1 +02)-)/2e 2 

m(1 + o 2 )-Y2 (e / a/2)F(e / ~ )  > 3mk(1 +O 2)-Y2 e2/2 

This class of solutions includes the rotation of a regular octahedron, with identical masses at the 
vertices, about an axis passing through the centres of two faces, which was studied in [1]. 

5. We will now consider the integrability of the approximate equations of motion of the mechanical 
system under consideration, but assuming the moments of inertia to be arbitrary. We know that the 
approximate equations of motion obtained by expanding the potential in terms of small parameters of 
the same type as oi, up to second-order terms, are completely integrable. At the same time: 

1. if all three principal central moments of inertia of the body coincide, the approximate equations 
of motion are the equations of inertial motion of a homogeneous sphere and the dynamics of the body 
is trivial; 

2. if only two of the principal central moments of inertia coincide, the equations of motion admit of 
another first-degree integral, analogous to the additional Kirchhoff integral in the problem of a body 
moving in a fluid; 

3. if the three principal central moments of inertia are all different, the equations of motion admit 
of another integral, analogous to the integral in Clebach's first case in the problem of a body moving 
in a fluid. 

Let us consider the approximate equations obtained by expanding the potential in powers of the 
parameters ei up to second-order terms. We have 

U=U o +U x+ . . . . .  2fM x mi(r 2 +a2i )-~ 1" + - X  c~'/2... 
i 2 i 

ci=-6fMr2mia2i(r+a2) -~, i=1, 2, 3 

If the principal central moments of inertia are equal, the approximate equations of motion of this 
rigid body about a fixed point are completely integrable: their integral is identical with the first integral 
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in Clebach's "second case" of the problem of a rigid body moving in an infinite volume of an 
incompressible fluid. The additional integral is 

J=-i2 i 

and moreover, unlike the case in which the expansions were done in terms of the parameters % the 
dynamics described by these approximate equations are by no means trivial: the motion is described 
in terms of 0-functions of time. 

If only two of the principal central moments of inertia are equal, say 11 = 12, one can indicate only 
two cases in which the equations of motion admit of an additional integral. In one of those cases we 
have cl = c2 (so that ml = m2, al = a2), and the additional integral is analogous to the Kirchhoff integral 
in the motion of a body in a fluid, of the form J = 0r3. In the other case, which occurs only at the zero 
level of the area iaategral (-/I = 0), we have 11 = / 2  = 2/3 (so that mla~ = m2a~ = m3a~/3), and Cl + c2 
= 2c3. Here the ~dditional integral is analogous to Chaplygin's particular integral in the problem of a 
body moving in a fluid, which is [5] 

j=(130)21_13(0~ +C~,32) 2 2 2 2 + 4 ~  I ( 0 2 I  3 , c I - c 2 = c 2 - c 3 = 2c 

and the equations are integrated in terms of elliptic functions. 
As in the case ,of the motion of a body in a liquid [6] (see also [7]), the equations of motion in the 

case when two principal moments of inertia are equal admit of no other cases in which an additional 
general first integral exists, apart from those listed above. 

Finally, if the three principal central moments of inertia are different, the approximate equations of 
motion are not ab~ays integrable, as happens when one uses small parameters of type oi, but only when 
Clebsch's condition holds [8] 

11(c2-c3)+12(c3-ci)+13(cl-c2)=0 (5.1) 

or ci = - vii + Ix, which is analogous to Clebsch's condition in the motion of a rigid body in an ideal 
fluid. Under these conditions the additional integral is 

J = X 1/20~ + v(1213"/12 +/311"Y~ + llI2~[~) 
i 

6. An integrable case of the equations of motion may be pointed out in a more complicated formulation 
of the problem. Let OXIX:~X 3 be an absolute system of coordinates and let Ci be attracting centres on 
the 9(/axes, respectively, with 

C,O--r, S,, I l=r,, S,=(S,,, Si2, Si3 ) 

where Mi are masses concentrated at the points Ci. 
The equations of motion are 

10y = 10~x0~+~ S i xaUlaS i ,  SI. =Si xc0 (6.1) 
i 

These equations, apart from the energy integral, have six geometrical integrals reflecting the ortho- 
normality of the basis Si. For these equations to be integrable in the general case, a further two first 
integrals are needed. 

We introduce the parameters 

Eij = 2ria j (r/2 + a ~  ) - I  

and expand the potential in power of tp0 up to second-order terms. Then 

U=Uo +U2+ . . . . .  2 fY .  Mi~., mj(ri2 +a~) -~  1 +-y  y 
i j 2 i  j 

c i j = - 3  Mimj(ri2 +a2i)-~(2riaj) 2 i, j = l ,  2, 3 
2 ~ 
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and we can consider the existence of additional integrals of the approximate equations of motion. 
We shall consider two extreme cases. 
Suppose that all the principal central moments of inertia are equal. Then, if 

cij = - x i r j + y i ,  i , j =  1 , 2 , 3  

the approximate equations of motion are completely integrable. Under these conditions the additional 
integrals are quadratic with respect to each of the variables and have the form 

i j 

J2 = - I X  x i ( m x s i )  2 +~'~ x ? •  rjS 2 
i i j 

But if all the moments of inertia are distinct, there is not always a pair of additional integrals, as hap- 
pens when one uses expansions in terms of the parameters ai/r j (see, for example, [4]), but only when 
certain conditions, analogous to Clebsch's conditions, are satisfied 

ll(Ci2 - Ci3 ) + 12(Ci3 -- Cil ) + 13(Cil - Ci2 ) = 0, i = 1, 2, 3 

Thus, the integrability of the approximate equations of motion depends not only on equality of the 
inertial and gravitational masses, as pointed out in [9, p. 25], but also on how the small parameters are 
defined in the problem. 
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